MD simulations of the p53 oncoprotein structure: the effect of the Arg273His mutation on the DNA binding domain
نویسندگان
چکیده
A comparative molecular dynamics (MD) simulation study was performed on the p53 oncoprotein to investigate the effect of the Arg273His (R273H) mutation on the p53DNA Binding Domain (DBD). The two p53 dimer structures of the wild-type and mutant Arg273His (R273H) were simulated with the same thermodynamic and environmental parameters. The obtained results demonstrate that the induced Arg273His mutation has a considerable effect on the p53DNA close contact interaction and changes the picture of hydrogen formation. The Arg273His mutation, in some cases, destroys the existing native hydrogen bond, but, in other cases, forms a strong p53 DNA hydrogen bond, which is not proper for the native protein. The MD simulation results illustrate some molecular mechanism of the conformational changes of the Arg273His key amino acid residue in the p53DNA binding domain, which might be important for the understanding of the physiological functioning of the p53 protein and the origin of cancer.
منابع مشابه
Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملشناسایی جهش در اگزونهای پنج و شش ژن P53 در زنان مبتلا به سرطان پستان آذربایجان شرقی
Background and Objectives: Breast cancer (BC) is the most common invasive malignancy affecting women worldwide. The tumor-suppressor P53 gene (P53) is frequently mutated in breast tumors. To use P53 as a target for therapy, it is important to accurately assess p53 mutation status in tumor samples. Materials and Methods: A total of 102 tumor samples were collected from breast cancer patients ref...
متن کاملIn silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein
Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered to be the fourth leading cause of mortality among women in the world. HPV is the most important cause of cervical cancer, which is the second most common cancer in women living in low and middle-income countries. To date, there is no effective cure for an ongoing HPV infection; therefore, it is required to in...
متن کاملDesigning a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations
The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...
متن کامل